
OpenMP 5.0 and Beyond:
Taking Good Care of the Node in Exascale?

Dr. Christian Terboven, terboven@itc.rwth-aachen.de
RWTH Aachen University

HUAWEI HPC Workshop 2020

October 29th, 2020

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

2

OpenMP for Exascale?!

• Why am I talking about OpenMP in the context of Exascale?

• Many believe:
Exascale programming := MPI + X

X := OpenMP + Y

• What does it take for OpenMP to be an attractive bride?

• Saying:

Wear something old, something borrowed, and something new!

Something old
Incremental parallelization and performance optimization

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

4

OpenMP
• De-facto standard for Shared-Memory Parallelization.

• 1997: OpenMP 1.0 for FORTRAN
• 1998: OpenMP 1.0 for C and C++
• 1999: OpenMP 1.1 for FORTRAN
• 2000: OpenMP 2.0 for FORTRAN
• 2002: OpenMP 2.0 for C and C++
• 2005: OpenMP 2.5 now includes

both programming languages.
• 05/2008: OpenMP 3.0
• 07/2011: OpenMP 3.1
• 07/2013: OpenMP 4.0
• 11/2015: OpenMP 4.5
• 11/2018: OpenMP 5.0
• 11/2020: OpenMP 5.1

4

RWTH Aachen
University is a member
of the OpenMP
Architecture Review
Board (ARB) since 2006.
Main topics:
 Affinity
 Tasking
 Tool support
 Accelerator support

http://www.OpenMP.org

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

5

Source Example: CG Method
• OpenMP is often used for loop-level parallelism:

• Lets consider the sparse matrix-vector-multiplication:

for (iter = 0; iter < sc->maxIter; iter++) {
// ...
vectorDot(r, z, n, &rho);
beta = rho / rho_old;
xpay(z, beta, n, p);
matvec(A, p, q);
// ...

}

void matvec(Matrix *A, double *x, double *y) {
#pragma omp parallel for private(j,is,ie,j0,y0)

for (i = 0; i < A->n; i++) {
y0 = 0;
is = A->ptr[i]; ie = A->ptr[i + 1];
for (j = is; j < ie; j++) {

j0 = index[j];
y0 += value[j] * x[j0];

}
y[i] = y0;

}
}

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

6

OpenMP allows to …

• … influence the distribution of loop iterations to threads via the schedule clause

• ... control thread affinity via the proc_bind clause and OMP_PLACES
environment variable

• ... ensure effective vectorization via the combined loop simd construct

• => OpenMP can be simple and complex to apply, depending on your goals

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

7

Extending the support for parallel loops
• Existing loop constructs are tightly bound to execution model:

• OpenMP also allows to …
− ... implement composable parallelism by means of tasking

− ... influence the partitioning of loop iteration into tasks via the grainsize
and numtasks clauses

− … combine all of these models with a well-defined semantic (of interaction)

join

distribute work

barrier

fork

#pragma omp parallel for
for (i=0; i<N;++i) {…}

#pragma omp simd
for (i=0; i<N;++i) {…}

…

#pragma omp taskloop
for (i=0; i<N;++i) {…}

generate tasks

taskwait

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

8

Source Example: CG Method
• Just one parallel region:

• Re-consider the sparse matrix-vector-multiplication:

− Result: composable parallelism

#pragma omp parallel
#pragma omp single
for (iter = 0; iter < sc->maxIter; iter++) {

// ...
vectorDot(r, z, n, &rho);
beta = rho / rho_old;
xpay(z, beta, n, p);
matvec(A, p, q);
// ...

}

void matvec(Matrix *A, double *x, double *y) {
#pragma omp taskloop private(j,is,ie,j0,y0)

for (i = 0; i < A->n; i++) {
y0 = 0;
is = A->ptr[i]; ie = A->ptr[i + 1];
/* inner for-loop left out for brevity */
y[i] = y0;

}
}

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

9

• Parallel Region & Worksharing

• Tasking

• SIMD / Vectorization

• Accelerator Programming

• Memory Management

• …

How did that change OpenMP?

Parallel Region

WorksharingTasking

Memory Management Accelerators

Vectorization

Something borrowed / 1
Tasking

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

11

• A task cannot be executed until all its predecessor tasks are completed

• If a task defines an in dependence over a variable
− the task will depend on all previously generated sibling tasks that reference at least one of the list items in an
out or inout dependence

• If a task defines an out/inout dependence over a variable
− the task will depend on all previously generated sibling tasks that reference at least one of the list items in an
in, out or inout dependence

Improvements to Tasking / 1

int x = 0;
#pragma omp parallel
#pragma omp single
{
#pragma omp task depend(inout: x) //T1
{ ... }

#pragma omp task depend(in: x) //T2
{ ... }

#pragma omp task depend(in: x) //T3
{ ... }

#pragma omp task depend(inout: x) //T4
{ ... }

}

T
1

T
2

T
3

T
4

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

12

• A task cannot be executed until all its predecessor tasks are completed

• If a task defines an in dependence over a variable
− the task will depend on all previously generated sibling tasks that reference at least one of the list items in an
out or inout dependence

• If a task defines an out/inout dependence over a variable
− the task will depend on all previously generated sibling tasks that reference at least one of the list items in an
in, out or inout dependence

• OpenMP allows to specify Task Priorities
to guide execution order

Improvements to Tasking / 1

Task pool
priority-aware

Parallel Team

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

13

• New dependency type: mutexinoutset

Improvements to Tasking / 2

int x = 0, y = 0, res = 0;
#pragma omp parallel
#pragma omp single
{
#pragma omp task depend(out: res) //T0
res = 0;

#pragma omp task depend(out: x) //T1
long_computation(x);

#pragma omp task depend(out: y) //T2
short_computation(y);

#pragma omp task depend(in: x)
res += x;

#pragma omp task depend(in: y)
res += y;

#pragma omp task depend(in: res) //T5
std::cout << res << std::endl;

}

T
3

T
4

T
5

T
1

T
2

T
0

depend(mutexinoutset: res) //T3depend(inout: res) //T3

depend(inout: res) //T4depend(mutexinoutset: res) //T4

T
3

T
4

1. inoutset property: tasks with a mutexinoutset
dependence create a cloud of tasks (an inout set) that
synchronizes with previous & posterior tasks that
dependent on the same list item

2. mutex property: Tasks inside the inout set can be
executed in any order but with mutual exclusion

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

14

Jack Dongarra on OpenMP Task Dependencies:

[…] The appearance of DAG scheduling constructs in the OpenMP 4.0 standard offers a
particularly important example of this point. Until now, libraries like PLASMA had to rely on
custom built task schedulers; […] However, the inclusion of DAG scheduling constructs in
the OpenMP standard, along with the rapid implementation of support for them (with
excellent multithreading performance) in the GNU compiler suite, throws open the doors to
widespread adoption of this model in academic and commercial applications for shared
memory. We view OpenMP as the natural path forward for the PLASMA library and
expect that others will see the same advantages to choosing this alternative.

Full article here: http://www.hpcwire.com/2015/10/19/numerical-algorithms-and-
libraries-at-exascale/

Tasking: the knightly accolade

http://www.hpcwire.com/2015/10/19/numerical-algorithms-and-libraries-at-exascale/

Something borrowed / 2
Accelerators

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

16

Offloading
• The target construct transfers the control flow to the target device
− Transfer of control is (by default) sequential and synchronous

• OpenMP separates offload and parallelism

• Support for asynchronicity? Already present in OpenMP: Tasking (see later)

Host Device

#pragma omp target \

alloc
1

from
4

to
2

pA

map(alloc:...) \
map(to:...) \

{ ... } 3
map(from:...)

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

17

Code snippet: OpenMP vs. OpenACC
• SAXPY: OpenACC compared to OpenMP

int main(int argc, const char* argv[]) {
float *x = (float*) malloc(n *

sizeof(float));
float *y = (float*) malloc(n *

sizeof(float));
// Define scalars n, a & init x, y

// Run SAXPY
#pragma acc parallel \
loop gang vector
for (int i = 0; i < n; i++){

y[j] = a*x[j] + y[j];
}
free(x); free(y); return 0;

}

int main(int argc, const char* argv[]) {
float *x = (float*) malloc(n *

sizeof(float));
float *y = (float*) malloc(n *

sizeof(float));
// Define scalars n, a & init x, y

// Run SAXPY
#pragma omp target
#pragma omp teams distribute parallel for
for (int i = 0; i < n; i++) {

y[j] = a*x[j] + y[j];
}
free(x); free(y); return 0;

}

OpenACC OpenMP

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

18

Catching up with GPU programming / 1
• OpenMP supports asynchronous and unstructured data movement:

double A[BLOCKS * LEN];

int enter , compute ;

#pragma omp target enter data nowait map(to: A [0: LEN]) \

depend (out: enter) depend (out: A [0: LEN])

for (int block = 0; block < BLOCKS ; block ++) {

#pragma omp target enter data nowait depend (inout : enter) \

map (to: A[(block + 1) * LEN: LEN]) \

depend (out : A[(block + 1) * LEN: LEN]) \

depend (in: A[(block - 1) * LEN: LEN])

#pragma omp target nowait depend (inout : compute) \

map (to: A[block * LEN: LEN]) \

depend (inout : A[block * LEN: LEN])

{

// do computation here

}

#pragma omp target exit data nowait \

map (release : A[block * LEN: LEN]) \

depend (inout : A[block * LEN: LEN])

}

Pipelining concept to
compute multiple blocks of
size len

Strength of OpenMP:
integration!

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

19

Catching up with GPU programming / 2
• OpenMP 5.1 refines existing functionality
− Support for mapping (translated) function pointers
− Device-specific environment variables to control their ICVs
− The interop construct
 Improves native device support (e.g., CUDA streams)
 Also supports interoperability with CPU-based libraries (e.g., TBB)
 Deep-dive OpenMP booth talk by Tom Scogland from LLNL

− The new dispatch construct, improved declare variant directive
 Enable use of variants with device-specific arguments

− …

• OpenMP Accelerator subcommittee since 2009:
− OpenACC’s idea: fast GPU-centric development
− OpenMP’ approach: include lessons learnt into OpenMP standard

Something new / 1
Memory Management

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

21

Memory Management
• Traditional DDR-based memory
• High-bandwidth memory
• Non-volatile memory

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

22

Memory Management: Allocators
• OpenMP 5.0 introduced memory management
− Allocator := an OpenMP object that fulfills requests to allocate and deallocate storage for program variables
 OpenMP allocators are of type omp_allocator_handle_t

• Allocation:
 omp_alloc(size_t size, omp_allocator_handle_t allocator)

• Deallocation:
 omp_free(void *ptr, const omp_allocator_handle_t allocator)
 allocator argument is optional

Allocator name Storage selection intent
omp_default_mem_alloc use default storage
omp_large_cap_mem_alloc use storage with large capacity
omp_const_mem_alloc use storage optimized for read-only variables
omp_high_bw_mem_alloc use storage with high bandwidth
omp_low_lat_mem_alloc use storage with low latency
omp_cgroup_mem_alloc use storage close to all threads in the contention

group of the thread requesting the allocation
omp_pteam_mem_alloc use storage that is close to all threads in the same

parallel region of the thread requesting the
allocation

omp_thread_mem_alloc use storage that is close to the thread requesting
the allocation

Something new / 2
Didn’t we all miss metaprogramming?

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

24

• Construct OpenMP directives for different OpenMP contexts
• Limited form of meta-programming for OpenMP directives and clauses

The metadirective directive

#pragma omp target map(to:v1,v2) map(from:v3)
#pragma omp metadirective \

when(device={arch(nvptx)}: teams loop) \
default(parallel loop)

for (i = lb; i < ub; i++)
v3[i] = v1[i] * v2[i];

!$omp begin metadirective &
when(implementation={unified_shared_memory}: target) &
default(target map(mapper(vec_map),tofrom: vec))

!$omp teams distribute simd
do i=1, vec%size()

call vec(i)%work()
end do
!$omp end teams distribute simd
!$omp end metadirective

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

25

• The nothing directive makes meta programming a bit clearer and more flexible
• If a certain criterion matches, the nothing directive can stand to indicate that no (other) OpenMP

directive should be used
− The nothing directive is implicitly added if no condition matches

The nothing directive

!$omp begin metadirective &
when(implementation={unified_shared_memory}: &

target teams distribute parallel do simd) &
default(nothing)

do i=1, vec%size()
call vec(i)%work()

end do
!$omp end metadirective

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

26

• Can be used to issue a warning or an error at compile time and runtime
• Consider this a “directive version” of assert(), but with a bit more flexibility

The error directive

!$omp begin metadirective &
when(arch={fancy_processor}: parallel) &
default(error severity(fatal) at(compilation) &

message(“No implementation available”)
call fancy_impl_for_fancy_processor()

!$omp end metadirective

Something new / 3
Tool support & *THE* OpenMP Runtime

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

28

OMPT: Tool support in OpenMP
• For productive performance analysis, performance tools need insight information from the runtime systems!

• OMPT defines states like barrier-wait, work-serial or work-parallel
− Allows to collect OMPT state statistics in the profile
− Profile break down for different OMPT states

• OMPT provides frame information
− Allows to identify OpenMP runtime frames
− Runtime frames can be eliminated from call trees

28

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

29

THE OpenMP Runtime

• In the end of 2012, Intel released their OpenMP runtime as open source
− https://www.openmprtl.org/
− Continuous updates since 07/2013 until today
− Integration into the LLVM project in 08/2013
 http://openmp.llvm.org/

• This is now *THE* OpenMP runtime for
− Intel C/C++ and Fortran compilers
− LLVM compilers
− GNU compilers (as an alternative)
− IBM compilers (for OpenPOWER & NVIDIA)
− numerous research activities and projects
− …

• Available on:
− Intel & AMD x86
− IBM OpenPOWER
− ARM
− and maybe some I don‘t know of yet

https://www.openmprtl.org/
http://openmp.llvm.org/

Summary and Outlook

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

31

• Broadly support on-node performant, portable parallelism

− Standardize syntax for commonly available (parallel) directives

− Consistently apply across C, C++ and Fortran

− To be simple yet flexible, supporting range of parallelism models

• OpenMP 5.0 fits within that vision

• OpenMP 5.1 refines how OpenMP 5.0 realizes it

• OpenMP 6.0 will be a major step to further realizing it

IEEE Proceedings article on vision for OpenMP:
“The Ongoing Evolution of OpenMP”

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

32

Advertisement: OpenMP tutorial at SC20

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

33

Advertisement: OpenMP books

A book that covers all of the
OpenMP 4.5 features, 2017

A new book about the OpenMP
Common Core, 2019

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

34

Projected development

• OpenMP 5.2 will be released by November 2021
− Late decision during 5.1 process to add this additional minor release
− Will focus on improving specification of OpenMP syntax
 Consolidate syntax to highlight commonality and to facilitate use of attributes
 Clarify and simplify specification of restrictions on clause usage

− Other changes likely to reduce redundancy in specification

• OpenMP 6.0 will be released in November 2023
− Deeper support for descriptive and prescriptive control
− More support for memory affinity and complex hierarchies
− Support for pipelining, other computation/data associations
− Continued improvements to device support
 Extensions of deep copy support (serialize/deserialize functions)

− Task-only or free-agent threads
− Event-driven parallelism

OpenMP 5.0 and Beyond | Dr. Christian Terboven |
RWTH Aachen University

35

OpenMP Support Continues To Increase!

OpenMP is widely supported by the
industry, as well as the research

and academic community

Thank you for your attention.

Questions?

	OpenMP 5.0 and Beyond:�Taking Good Care of the Node in Exascale?
	OpenMP for Exascale?!
	Something old
	OpenMP
	Source Example: CG Method
	OpenMP allows to …
	Extending the support for parallel loops
	Source Example: CG Method
	How did that change OpenMP?
	Something borrowed / 1
	Improvements to Tasking / 1
	Improvements to Tasking / 1
	Improvements to Tasking / 2
	Tasking: the knightly accolade
	Something borrowed / 2
	Offloading
	Code snippet: OpenMP vs. OpenACC
	Catching up with GPU programming / 1
	Catching up with GPU programming / 2
	Something new / 1
	Memory Management
	Memory Management: Allocators
	Something new / 2
	The metadirective directive
	The nothing directive
	The error directive
	Something new / 3
	OMPT: Tool support in OpenMP
	THE OpenMP Runtime
	Summary and Outlook
	IEEE Proceedings article on vision for OpenMP: �“The Ongoing Evolution of OpenMP”
	Advertisement: OpenMP tutorial at SC20
	Advertisement: OpenMP books
	Projected development
	OpenMP Support Continues To Increase!
	Foliennummer 36

