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But first… 

• … home come the title?

SC20, fully affected by the pandemic, sailed with two titles to
illustrate how advanced computing plays a central role for not
just research and development, but for everyone’s life.

In my opinion, the range of programming models is a foundation
of advanced computing. Given the increasing diversity of
systems and applications, the set of topics that we are working
on is broadening.
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Reseach Directions + Agenda of this Talk

• Research Directions of RWTH’s HPC Team:
• Parallel Programming Models and Systems: OpenMP + MPI
• Correctness Checking of Parallel Programs: MUST, Archer, OTF-CPT
• Total Cost of Ownership in HPC
• Analysis of Parallel Computer Architectures
• High-level methodological HPC support

• First: three slides about RWTH and the IT Center / i12

• Agenda of this talk:
1. Selected contributions to Parallel Programming
2. Parallel Performance Engineering
3. Coupling HPC+AI Applications
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RWTH Aachen University

A leading university with strong research
• One of the leading Technical Universities in Germany (TU9)
• One of eleven Germen Universities of Excellence
• Ranked among top 10 German universities in THE 2023
• One of the central nodes in the German Initiative for Research Data 

Management (NFDI)
• Host of many recognized centers: National High Performance Computing 

Center for Engineering Sciences (NHR4CES), ....

Studies and Teaching
Excellent Teaching, Learning and Assessment
• 47.269 Students
• 13.354 International Students
• 170 courses of study

Employees and Finances
• 10.249 Employees
• 1.108 Mio. Euro annual budget
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IT Center @ RWTH Aachen University

Mission
IT-Service Provider for RWTH Aachen University
- From network infrastructure to HPC systems
- E-Learning and SLCM 
- Responsible to support Research Data Management at RWTH

National Mission
- HPC for Computational Engineering Sciences (NHR4CES)
- Important node of the NFDI network

Staff and finances
• 360 employees

(111 scientists, 130 staff, 46 apprentices, 74 students)
• About 42 M€ annual budget , 

• 12M€ staff, 30M€ operations & invest
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Ethernet

Compute and Storage for HPC and AI workflows: CLAIX
Extension of the compute system in 2023:
• 700+ nodes: Intel Saphire Rapids
• 150+ GPUs: Nvidia H100
HPC Storage:
• 3.2 PB DDN IntelliFlash, 10 GB/s 
• 24 PB DDN Lustre, 450 GB/s

HPC
• Dual-Socket,
• DLC
• Local NVMe SSD

ML
• Local NVMe SSD
• 4 GPUs tightly 

connected

Interactive
• >= 1 TB DDR
• Local NVMe SSD
• 4 low-cost GPUs

HOME
3.3 PB

SSD SSD SSD

HPCWORK
24 PB

WORK

Research Data 
Object Store

3 PB

Backup
Object Store

40 PB

RDMA

$BEOND
SSD SSD SSD

$BEOND
SSD SSD SSD

Research 
Data 
NRW

RDS Object Storage:
• DELL EMC Isilon F800
• DELL ECS EX3000
Backup Object Storage:
• Hitachi Vantara, HCP



Work on OpenMP
• Report from current work in the Affinity Subcommitee of the OpenMP Language Committee
• Credits: Jannis Klinkenberg (and others)
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• Parallel Region & Worksharing

• Tasking

• SIMD / Vectorization

• Accelerator Programming

• Memory Management

• …

Is OpenMP as a programming model still alive?

Parallel Region

WorksharingTasking

Memory Management Accelerators

Vectorization
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• Did you know that you can … allocate in high-bandwidth memory?

• Recent work:
- New allocator traits for finer placement control

§ partition: partitioning of allocated memory over storage resources:
environment, nearest, blocked, interleaved, user (allows writing and specifying custom partitioner)

§ part_size: specifies the size of parts allocated over storage resources
- Allow upper bound and stride for OMP_PLACES together with abstract names

§ Examples: OMP_PLACES=cores(4) or OMP_PLACES=ll_caches(1:2)
- Unify allocator and target memory runtime routines

§ Capability to allocate device memory with OpenMP allocators: new routines returning target memory spaces
§ Memory space containing storage resources accessible by all devices as requested

Memory Management (since OpenMP 5.0)

#include <omp.h>
double *x = omp_alloc(N * sizeof(double), omp_high_bw_mem_alloc);



Parallel Programming for More than HPC  |  Christian Terboven  |  RWTH Aachen University10

• Memory Performance Characteristics: Bandwidth & Latency
- Interplay with NUMA effects
- System: Intel Cascade Lake + Intel Optane

• Bandwidth Benchmark: STREAM
- Clearly displays NUMA effects
- Using numactl to specify

§ Specify where to run (--cpunodebind)
§ Specify which memory to use (--membind)

- Evaluated different number of threads

• Latency Benchmark: Intel Memory Latency Checker or Lmbench
- Pointer chasing (avoids HW prefetching)

Experiments with Heterogeneous Memory
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Bandwidth Results – Cascade Lake + Optane (Regular STREAM Triad)

CPU: Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz
Freq Govenor: performance
---------------------
available: 4 nodes (0-3)
node 0 cpus: 0 2 4 6 8 10 12 14 16 18 

20 22 24 26 28 30 32 34 36 38
node 0 size: 191936 MB
node 0 free: 178709 MB
node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 

25 27 29 31 33 35 37 39
node 1 size: 192016 MB
node 1 free: 179268 MB
node 2 cpus:
node 2 size: 759808 MB
node 2 free: 759794 MB
node 3 cpus:
node 3 size: 761856 MB
node 3 free: 761851 MB
node distances:
node   0   1   2   3 

0:  10  21  17  28 
1:  21  10  28  17 
2:  17  28  10  28 
3:  28  17  28  10

Architecture

DRAM + Optane

Results for CPU-Domain 0 on Socket 0 [MB/s]
Threads Mem-Domain 0 Mem-Domain 1 Mem-Domain 2 Mem-Domain 3 DRAM - Local

vs Remote NVM / DRAM

1 10484,30 5720,93 5156,73 2817,33 1,8326 2,0331
2 20258,73 11180,27 9700,57 4672,83 1,8120 2,0884
3 29931,40 16419,10 12629,97 6402,63 1,8230 2,3699
4 39393,77 21381,30 14952,13 7777,47 1,8424 2,6347
5 47635,00 26099,27 16738,10 8996,57 1,8251 2,8459
6 56124,63 30449,43 18069,27 9937,73 1,8432 3,1061
7 63814,83 34368,80 19117,40 10682,77 1,8568 3,3380
8 71127,77 37621,47 19992,70 11237,80 1,8906 3,5577
9 77052,30 40462,83 20548,63 11665,90 1,9043 3,7498

10 82760,67 42491,03 21132,23 11578,80 1,9477 3,9163
11 87170,37 43757,17 21255,03 11052,03 1,9921 4,1012
12 90497,07 44515,83 21544,50 10421,80 2,0329 4,2005
13 92723,13 45005,23 21687,73 9807,03 2,0603 4,2754
14 94877,07 45303,67 21752,83 8900,00 2,0942 4,3616
15 96342,97 45459,00 21711,43 7855,93 2,1193 4,4374
16 97184,43 45486,57 21658,70 6677,27 2,1366 4,4871
17 97578,23 45499,37 21555,20 5649,77 2,1446 4,5269
18 97749,70 45490,17 21565,00 4597,50 2,1488 4,5328
19 97817,47 45475,37 21562,40 3602,27 2,1510 4,5365
20 97713,80 45477,97 21374,57 2999,00 2,1486 4,5715

DRAM Sockets Optane
Socket 0

Optane
Socket 1
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H2M: Workflow and Concept

• Allocation Strategy
- Generates placement decision / 

recommendation based on trait set
for a single entity

• Commit Strategy
- Receives multiple allocation

declarations (with traits) and decides
about the final allocation order

- Can make use of allocation strategy
but is also able to modify traits or
placement decision

• Migration Strategy
- Receives information about

registered allocations and their
current trait sets (that might have
been updated in the meantime) and 
decides how and where to move
data

H2M Runtime

Application

Allocation Strategy

Commit Strategyhwloc: Identify
memory kinds

Allocation Traits

Memory

HBM NVMDRAM

Detailed Memory 
Characteristics for

Machine
Knowledge

Topology & Binding
Placement Decisions Cu

st
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ize
d
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Memory Profiling & 
Recommendations

Migration Strategy

In the interest of time: Clément knows enough about
 this, as our joint DFG-ANR project H2M is the reason

for me being here this week J
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• Idea: Find devices that are close to the current thread
1. Find devices that are close to the current thread

2. Use devices that are close to data used in target

Data/Thread-to-Device Affinity (OpenMP 6.0) / 1

int n=20; // desired number of devices
int n_dev_found; // actual number of devices
int dev_ids[n];
n_dev_found = omp_get_devices_in_order

(n, dev_ids, <trait_lowest_distance>);

#pragma omp target device(dev_ids[0]) // closest device
...
#pragma omp target device(dev_ids[n_dev_found-1])

#pragma omp task affinity(data[start:len])
{

#pragma omp target map(tofrom: data[start:len]) \
device_affinity(data[start:len])

{
// content of the target task

}
}

S1 Mem

GPU

GPU

S0Mem

GPU

GPU

T T

T T T T

T T

D

D

D

D

n Scenario 1: Data not mapped to any device
à Use device that is close to data in host memory

n Scenario 2: Offload to device that already holds 
part of required data

à Minimize data movement & reuse existing data
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• Question: Does it matter? Here: measurement on AMD MI210

Data/Thread-to-Device Affinity (OpenMP 6.0) / 2
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GPU 0 GPU 1 - 2 socket / 8 NUMA domains: 32x AMD EPYC 7F52

- 2x AMD MI210
• GPU 0 connected to NUMA domain 2
• GPU 1 connected to NUMA domain 7



Performance Engineering
• Report from current work in the EU CoE projects POP, POP2 and POP3
• Credits: Joachim Protze (and others)
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• Problem:
- Why is my code getting inefficient at scale?
- Multiple fundamental issues of (parallel) programming possible

• Solution: POP metrics
- Standardized performance assessment independent of application / system
- Goal: Enable simple verification of performance improvements

Motivation
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OpenMP threads

KKRhost - MPI_SCHEME=1 - 16 MPI ranks

runtime efficiency ideal 80-percent

https://pop-coe.eu
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• Hierarchy of metrics
- Aka fundamental model factors

• Highlight issues in the parallel structure of an application

• Parallel Efficiency breaks down into
- Load balance
- Serialization
- Transfer

• Computational Scaling captures impact of scaling to 
node-level performance

Standard POP metrics

Global Scaling

Computational 
Scaling Parallel Efficiency

Load Balance 
Efficiency

Communication 
Efficiency

Serialization 
Efficiency

Transfer 
Efficiency

75

90 90

81

6190

55
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• Reflects global imbalance of work between execution units

• 𝐿𝐵 = !"#(%&'(%) *+,')
./0(%&'(%) *+,')

• Useful time: execution time outside parallel runtimes

Standard POP metrics

Load Balance

Load 
Imbalance

L
B

useful time
parallel runtime
load imbalance

Legend

Global Scaling

Computational 
Scaling Parallel Efficiency

Load Balance 
Efficiency

Communication 
Efficiency

Serialization 
Efficiency Transfer Efficiency

75

90 90

81

6190

55
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• Reflects moving imbalance of work between execution units, resp., 
alternating dependencies

• 𝑆𝑒𝑟𝐸 = ,!1(%&'(%) *+,')
+2'!) 3%4*+,'

• Ideal runtime: execution time on an ideal machine with 0 communication 
cost (inf. BW / 0 lat)

Standard POP metrics

Serialization Efficiency

SerE

S
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L
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• Cost of transfer/communication/synchronization

• 𝑇𝐸 = +2'!) 3%4*+,'
3'!) 3%4*+,'

• Real runtime: observed execution time

Standard POP metrics

Transfer Efficiency

TE TE
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• Generalization of multiplicative hybrid 
metrics
- Hybrid split of Communication Efficiency 

into programming models

Hybrid POP metrics

Critical path-based model

Reference: J. Protze, F. Orland, K. Haldar, T. Koritzius, C. Terboven, „On-the-Fly Calculation of Model Factors for Multiparadigm Applications“, Euro-Par 2022

• Idea: 
- Critical path = event path in program execution

with longest duration
- 𝑟𝑢𝑛𝑡𝑖𝑚𝑒!"#$% ≈ 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ 𝑜𝑓 𝑢𝑠𝑒𝑓𝑢𝑙 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑜𝑛

• Prototype tool for „on-the-fly“ calculation of hybrid metrics
- Enables metric calculation for applications with non hierarchical

communication (e.g. MPI-Detach with detached tasks) 



Coupling HPC+AI
• Report from current work in the NHR4CES Cross-sectional group Parallelism & Performance
• Credits: Fabian Orland (and others)
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• CFD simulations cannot live without modeling approaches
- Becomes worse in multi-physics and multi-scale phenomena, or with interactions such as combustion
- Will be complemented with data-based models

• At Exascale, the amount of data may exceed the Exabyte range for single simulation runs
- In-situ data reduction, extraction and interpretation will hence be unavoidable

• To utilize HPC resources efficiently, software and workflows must scale to high CPU counts
- In compute-drive applications, analyses are frequently a posteriori, necessitating to have the data on disk
- As the field of parallel and scalable ML and DL is progressing, those algorithms become feasible to be intertwined with 

simulation codes implementing full loops

• Many pre-Exascale systems integrate homogeneous and heterogeneous compute nodes
- ML and DL components can be accelerated

Challenges at Scale (or: Exascale) / 1

Tasking may be employed to provide efficient and scalable coupling of SW components
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Data 
Generation

Model 
Design & 

ML Training

CFD 
Simulation

In-situ 
Model Use

• Key expectation: As the field of parallel 
and scalable ML and DL is progressing, 
those algorithms become feasible to be 
intertwined with simulation codes 
implementing full loops

Challenges at Scale (or: Exascale) / 2

Tasking may be employed to provide efficient and scalable coupling of SW components
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• A-posteriori evaluation of coupled CFD+ML simulation is open research

• How can we efficiently couple highly parallel (CFD) simulations with ML on heterogeneous architectures?
• How can we model the performance of a coupled HPC-ML application?
• How can we optimize a coupled HPC-ML application?

Motivation

Research Questions

…

Solve transport equations
(1 mpi process per core)
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• C++ library with C & Fortran interfaces
• Hides MPI complexity from the user
• Supports multiple AI frameworks
• Different inference modes:
- CPU only (no MPI communication)
- GPU only
- Hybrid CPU+GPU (MLP      CNN       ) 

Coupling

AIxeleratorService
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Results – CIAO-AI DHIT

Scalability - CPU

Ref + PhyDLL: 4 Python procs á 12 OpenMP threads
per CPU node + 4-32 CIAO procs on additional node

Forpy, NN_pred, AIX: 4 CIAO procs á 12 OpenMP
threads per CPU node
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Results – CIAO-AI DHIT

Scalability - GPU

PhyDLL does not scale well

AIX scales well, < 4ms

4 CIAO procs per GPU node

(+ 2 Python procs per GPU node) for PhyDLL
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• Optimization of simulation-driven design processes –
deep drawing of sheet metal



Parallel Programming for More than HPC  |  Christian Terboven  |  RWTH Aachen University30

• OpenForm – Numerical simulation of deep drawing for design optimization

Simulation input Simulation output

A: Geometry of the Forming Tools
Addendum Surfaces

B: Initial Geometry and Properties of Blank
Outline
Thickness



Parallel Programming for More than HPC  |  Christian Terboven  |  RWTH Aachen University31

Current Workflow

Trial and error: time and resource consuming
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Resulting Optimized Workflow



Summary
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• Reims and Aachen are partner cities …
- https://aachen-reims.de/
- https://amitiereimsaachen.blogspot.com/
- … and we would be more than happy to partner with you on such topics ;-)

• The compute architecture and memory subsystem are changing …
- … and “performance” becomes even more complex to achieve
- … and “performance” becomes even more complex to assess

• Integration of research results into OpenMP (and MPI): sustainability of research

• The applications are changing …
- … and require More than HPC to be made fit for the next decade!

Summary

https://aachen-reims.de/
https://amitiereimsaachen.blogspot.com/

